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Abstract. Bias/variance analysis is a useful tool for investigating the
performance of machine learning algorithms. Conventional analysis de-
composes loss into errors due to aspects of the learning process, but in
relational domains, the inference process introduces an additional source
of error. Collective inference techniques introduce additional error both
through the use of approximate inference algorithms and through vari-
ation in the availability of test set information. To date, the impact of
inference error on model performance has not been investigated. In this
paper, we propose a new bias/variance framework that decomposes loss
into errors due to both the learning and inference process. We evaluate
performance of three relational models and show that (1) inference can
be a significant source of error, and (2) the models exhibit different types
of errors as data characteristics are varied.
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1 Introduction

Bias/variance analysis (e.g., [3]) has been used for a number of years to in-
vestigate the mechanisms behind model performance. This analysis is based on
the fundamental understanding that prediction error has two components (bias
and variance) and that there is often a tradeoff between the two when learning
statistical models. Searching over a larger model space, to estimate a more com-
plex model, can decrease bias but often increases variance. On the other hand,
very simple models can sometimes outperform complex models due to decreased
variance, albeit with higher bias (e.g., [7]).

Conventional bias/variance analysis decomposes loss into errors due to as-
pects of learning procedures. Loss is decomposed into three factors: bias, variance
and noise. In the traditional decomposition, bias and variance measure estima-
tion errors in the learning technique. For example, the Naive Bayes classifier
typically has high bias due to the assumption of independence among features,
but low variance due to the use of a large sample (i.e., entire training set) to
estimate the conditional probability distribution for each feature [2].

The assumption underlying the conventional decomposition is that there is
no variation in model predictions due to (1) the inference process, and (2) the
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available information in the test set. Classification of relational data often vio-
lates these assumptions when collective inference techniques are used. If there
are dependencies among the class labels of related instances, the inferences about
one object can be used to improve the inferences about other related objects.
Collective inference techniques exploit these dependencies by simultaneously in-
ferring values over the entire dataset and results in more accurate predictions
than conditional inference for each instance independently [8].

Collective inference often requires the use of approximate inference tech-
niques, which may introduce variation in model predictions for a single instance.
For example, final predictions for an instance may depend on the initial (ran-
dom) start state used during inference, thus multiple runs of inference may result
in different predictions. In addition, relational models are often applied to clas-
sify a partially labeled test set, where the known class labels serve to seed the
collective inference process. Current methods for evaluating relational learning
techniques typically assume that labeling different nodes in the test set have
equivalent impact. However, the heterogeneity of the relational graph may allow
some instances to have more of an impact on neighbor predictions than others—
thus, which instances are labeled in the test set may cause additional variation
in the predictions. Finally, relational models are generally learned on a fully
labeled training set (i.e., the class labels of all neighbors are known), but then
applied to an unlabeled, or partially labeled, test set. This mismatch between
training and test set information may impact the final model predictions.

To date, the impact of inference error on model performance has not been
investigated. In this paper, we propose a new bias/variance framework that de-
composes marginal squared-loss error into components of both the learning and
inference process. We evaluate performance of three relational models on syn-
thetic data and use the framework to understand the reasons for poor model
performance. Each of the models exhibits a different relationship between error
and dataset characteristics—relational Markov networks [12] have higher infer-
ence bias in densely connected networks; relational dependency networks [9] have
higher inference variance when there is little information to seed the inference
process; latent group models [10] have higher learning bias when the underlying
group structure is difficult to identify from the network structure. Using this
understanding, we propose a number of algorithmic modifications to improve
the models’ performance.

2 Framework

In conventional bias/variance analysis, loss is decomposed into three factors:
bias, variance and noise [3,1]. Given an example z, a model that produces a
prediction f(z) = y, and a true value for = of ¢, squared loss is defined as:
L(t,y) = (t — y)%. The expected loss for an example = can be decomposed into
bias, variance, and noise components. Here the expectation is over training sets
D—the expected loss is measured with respect to the variation in predictions for
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x when the model is learned on different training sets: Ep ([L(t,y)] = B(z) +
V(z) + N(z).

Bias is defined as the loss incurred by the mean prediction y,, relative to
the optimal prediction y.: B(x) = L(y«, ym). Variance is defined as the average
loss incurred by all predictions y, relative to the mean prediction y,,: V(z) =
Ep[L(ym,y)]- Noise is defined as the loss that is incurred independent of the
learning algorithm, due to noise in the data set: N(x) = E:[L(¢, y«)].

Bias and variance estimates are typically calculated for each test set example
x using models learned from a number of different training sets. This type of
analysis decomposes model error to associate it with aspects of learning, not
aspects of inference. The technique assumes that exact inference is possible and
that the training and test sets have the same available information. However, in
relational datasets there can be additional variation due to the use of approxi-
mate inference techniques and due to the availability of test set information. In
order to accurately ascribe errors to learning and inference, we have extended the
conventional bias/variance framework to incorporate errors due to the inference
process.

For relational data, we first define the expected total loss for an instance x as
an expectation over training sets Dy, and test sets D;.. Following the standard
decomposition for loss as described in [4], we can decompose total loss into total
bias, variance, and noise:

Eptr,Dte,t[L(t,y)]

= EDtr,Dte,t[(t - 9)2}

= Ei[(t — E[t])*) + Epirpiel(y — E[t])’]

= Nr(z) + Eptr,pte[(y — Eptr,ptely] + Eptr,ptely] — E[t])?]

= N7(2) + Eptr,pte[(y — Eptr,nte[y])? + (Eptr, Deely] — E[t])* +
2(y — EDtr,Dte[y]) ) (EDtT,Dte[y] — Elt])]

= N1() + Eper,pic[(y = Epir,pte[y])’] + (Epir,picly] — E[t])°

= Nr(z) + Vr(z) + Br(z)

In this decomposition the total bias Br(z), and total variance Vp(x) are
calculated with respect to variation in model predictions due to both the learning
and inference algorithms.

Then we define the learning loss as an expectation over training sets Dy,
alone, using a fully labeled test set for inference. For example, when predicting
the class label for instance z;, the model is allowed to use the class labels (and
attributes) of all other instances in the dataset (X — {x;}). This enables the ap-
plication of exact inference techniques and ensures that the test set information
most closely matches the information used during learning. Note that this part of
the analysis mirrors the conventional approach to bias/variance decomposition,
isolating the errors due to the learning process. For this reason, we will refer to
the components as learning bias, variance, and noise:
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Eptr [ L(t,y)]

= EDtr,t[(t - y)z]

= Ey[(t — E[t])®] + Epe[(y — E[t])?]

= Np(z) + Eper[(y — Epely] + Eperly] — Et])?]

= Ni(2) + Eper[(y = Eperly))® + (Epe[y] — E[t])* +
2(y — Epu[y]) - (Eperly] — E[t])]

= Ni(2) + Epir[(y — Eper[y))?] + (Epir[y] — E[t])?

= Np(z) + Vi(x) + Br(z)

Once we have measured the total and learning bias/variance, we can define
inference bias/variance as the difference between the total error and the error
due to the learning process alone:

B](l') = BT(I') - BL(I')
Vi(x) = Vp(x) — Vi(x)

For example, consider the distributions of model predictions in figure 1. We
measure the variation of model predictions for an instance x in two ways. First,
when we generate synthetic data we record the data generation probability as the
optimal prediction y*. Next, we record marginal predictions for = from models
learned on different training sets, allowing the class labels of related instances to
be used during inference. These predictions form the learning distribution, with a
mean learning prediction of yr.,,. Finally, we record predictions for x from models
learned on different training sets, where each learned model is applied a number
of times on a single test set. These predictions form the total distribution, with
a mean total prediction of yr,,. The model’s learning bias is calculated as the
difference between y* and yr.,; the inference bias is calculated as the difference
between yr,, and yr.,,. The model’s learning variance is calculated from the
spread of the learning distribution; the inference variance is calculated as the
difference between the total variance and the learning variance.

3 Experiments

To explore the effects of relational graph and attribute structure on model perfor-
mance, we generated synthetic datasets with varying levels of autocorrelation,
linkage, and group structure. Group structure is used to control the inherent
clustering of the data. Our experiments evaluate model performance in a classi-
fication context, where only a single attribute is unobserved in the test set. We
generated data in the manner described below, and learned models to predict
X1 using the intrinsic attributes of the object (X3, X3, X4) as well as the class
label and the attributes of directly related objects (X7, Xs, X3, X4). We eval-
uated three relational models, measuring squared loss and decomposing it into
bias and variance components for each model.
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Fig. 1. Distributions of model predictions.

3.1 Synthetic data

Our synthetic datasets are homogeneous data graphs with autocorrelation due
to an underlying (hidden) group structure. Each object has a group G and four
boolean attributes: X;, X, X3 and X,4. Each group has an associated type T'.
We used the generative process described in Table 1 to generate a dataset with
No objects and Gg average group size, using the settings specified below. The
procedure uses a simple model where X; has an autocorrelation level of 0.53, X5
depends on X7, and the other two attributes have no dependencies.

Sz
I

25
{(p(T=1) = 0.50; p(T=0) = 0.50}
p(X1=1|Tg=1)=0.90; p(X; =0|T =0)=0.90.
P(Xy=1|X,=1)=0.75; p(X2=0|X; =0)=0.75.
p(X4=1)=0.50

o

p(T
p(X1|Te
p(Xa| X1

p(Xz=1

\_/\_/\-/V
I |

We generated data with two different groups sizes and levels of linkage:

Gs : small = 5; large = 25
Liow|Gs = small : p(E=1|G; =G}) = 0.50; p
Lpigh|Gs = small : p(E=1|G;=Gy) = 0.80;p
Lioy|Gs = large : p(E=1|G; =G}) = 0.20; p
(E=1|G;=Gy) =0.30;p

E=1|G;#G}) = 0.0008.
E=1|G;#G}) = 0.004.
E=1|G;#Gy,) = 0.0008.
E=1|G;#Gy) = 0.004.

P -

Lpign|Gs = large : p

3 We only report results for autocorrelation=0.5 because varying autocorrelation does
not alter the relative performance of the models—lower levels of autocorrelation
weaken the effects, higher levels strength the effects reported herein.



6 Bias/Variance Analysis for Relational Domains

Figure 2 graphs a sample synthetic dataset with small group size and high
linkage. The final datasets are homogeneous—there is only one object type and
one link type, and each object has four attributes. After the groups are used to
generate the data, we delete them from the data—the groups are not available
for model learning or inference.

Table 1. Synthetic data generation

For each group g, 1 < g < (Ng = No/Gs):
Choose a value for group type ty from p(T).
For each object ¢, 1 <1 < No:
Choose a group g; uniformly in [1, Ng].
Choose a class value Xy; from p(X1|Tg,).
Choose a value for Xa; from p(X2|X1).
Choose values for X3; from p(X3) and X4; from p(X4).
For each object 7, 1 < j < No:
For each object k, j < k < No:
Choose whether the two objects are linked from p(E|G; = Gy).

3.2 Models

We compare the performance of three different relational models: relational
Markov networks (RMNs) [12], relational dependency networks (RDNs) [9], and
latent group models (LGMs) [10].

RMNs extend Markov networks to a relational setting, representing a joint
distribution over the values of the attributes in a network dataset. RMNs rep-
resent the joint distribution using a undirected graphical model, with a set of
relational clique templates and corresponding potential functions. We defined
clique templates for each pairwise combination of class label value and attribute
value, where the available attributes consisted of the intrinsic attributes of ob-
jects, and both the class label and attributes of directly related objects. We used
maximum a posterior parameter estimation to estimate the feature weights, us-
ing conjugate gradient with zero-mean Gaussian priors, and a uniform prior
variance of 5. For inference, we used loopy belief propagation.

RDNs extend dependency networks [6] to work with relational data in much
the same way that RMNs extend Markov networks. RDNs approximate the joint
distribution with pseudolikelihood—modeling the joint with a set of conditional
probability distributions that are each learned independently. We used relational
probability trees (RPTs) [11] as the component CPD to model X;. Note that the
RPT is a selective model (i.e., the learning algorithm select which features are
relevant to the task), so it may not use all the available attributes. For inference,
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Fig. 2. Sample synthetic dataset.

we used Gibbs sampling with fixed-length chains of 2000 samples and a burn-in
length of 100.

LGMs specify a generative probabilistic model for the attributes and link
structure of a relational dataset. LGMs are a form of probabilistic relational
model that combine a relational Bayesian network [5], link existence uncertainty,
and hierarchical latent variables. The model posits groups of objects in the data
of various type. Membership in these groups influences the observed attributes of
objects, as well as the existence of relations (links) among objects. LGMs use a
sequential learning approach—spectral clustering is used first to determine group
membership based on the observed link structure alone, then EM is used to learn
the remainder of the model (i.e., infer group types and estimate parameters).
The resulting clusters are disjoint, and within each group the class labels are
conditionally independent given the group type, thus we can use standard belief
propagation for inference in the test set.

3.3 Results

During inference we varied the number of known class labels in the test set,
measuring performance on the remaining unlabeled instances. This serves to
illustrate model performance as the amount of information seeding the infer-
ence process increases. We expect similar performance when other information
seeds the inference process—for example, when some labels can be inferred from
intrinsic attributes, or when weak predictions about related instances serve to
constrain the system.

To measure the expected loss over training and test sets, we used the following
procedure:

1. For each outer trial ¢ = [1,5]:
(a) Generate test set.
(b) For each learning trial j = [1, 5]:
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i. Generate training set, record optimal predictions.
ii. Learn model of X; on the training set.
iii. Infer marginal probabilities for test set with fully labeled test data
(i.e., X — {X;}), record learning predictions.
iv. For each inference trial k = [1, 5] and proportion labeled p= [0.0, 0.3, 0.6]:
A. Randomly label p% of test set.
B. Infer marginal probabilities for unlabeled test instances, record
total predictions.
C. Measure squared loss.
(¢) Calculate learning bias and variance from distributions of learning pre-
dictions.
(d) Calculate total bias and variance from distributions of total predictions.
2. Calculate average model loss, average learning bias/variance, average total
bias/variance.

Figure 3 graphs performance on four different types of data. The first set of
data have small group size and low linkage, thus we expect it will be difficult for
the models to exploit the autocorrelation in the data due to low connectivity.
The second set of data have small group size but high linkage, thus we expect the
models will be able to exploit neighbor information more effectively. The third
set of data have large group size and low linkage. We expect the LGM models to
be more accurate on data with large group sizes because they can incorporate
information from a wider neighborhood than RDNs and RMNs, which use only
local neighbor information. The fourth set of data have large group size and high
linkage—we expect the models will be able to exploit autocorrelation dependen-
cies most effectively in these data, due to high connectivity and clustering.

Figure 3 graphs the squared loss decomposition for each model as the level of
test-set labeling is varied. When group size is small and linkage is high (row b),
LGMs are outperformed by the RDNs when the test data are at least partially
labeled. The bias/variance decomposition shows that poor LGM performance is
due to high learning bias. This is likely due to the LGM algorithm’s inability
to identify the latent group structure when group size is small and linkage is
high. The LGM learning procedure uses a sequential approach where the data
are clustered into groups using the link structure alone and the remainder of the
model is learned given the identified group structure. When density of linkage
between groups is relatively high compared to group size it will be difficult for
the clustering algorithm to correctly identify the fine grained underlying group
structure, and this in turn will bias the learned model. When LGMs are given
the true underlying group structure, this bias disappears.

When group size is large and linkage is low (row c), LGMs significantly
outperform RDNs when there is 0% test set labeling. The bias/variance decom-
position shows that poor RDN performance is due to high inference variance.
(Note the difference between RDN total variance and learning variance.) The
RDN inference algorithm uses Gibbs sampling, seeded with a randomly labeled
test set. When there are few labeled instances in the test set, the inference pro-
cess may be unduly influenced by the initial random labeling of the test set if
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the RDN model has selected the class label in lieu of other known attributes in
the data. When such RDN models are applied to an unlabeled test set, the ini-
tial random Gibbs labeling may bias the inference process to converge to widely
varying labelings. Thus, the initial random labeling can increase the variance
of predictions over multiple runs of inference, particularly when there is little
information to seed the inference process.

When group size is large and linkage is high (row d), LGMs outperform RMNs
regardless of the level of test set labeling. The bias/variance decomposition shows
that poor RMN performance is due to high inference bias. (Note the difference
between RMN total bias and RMN learning bias.) This indicates that the RMN
inference procedure is likely to bias the marginal probability estimates when
run in a densely connected network with little seed information. This may be
due to the algorithm learning skewed clique weights on a fully labeled training
set. When these weights are applied to collectively infer the labels throughout
the test set, the inference process may converge to extreme labelings (e.g., all
positive labels in some regions of the graph, all negative labels in other regions)
when the graph is very “loopy” (i.e., densely connected). We experimented with
a wide range of priors to limit to the impact of weight overfitting but the effect
remained consistent.

4 Discussion

The synthetic data experiments measure model performance over a range of data
characteristics, illustrating the situations in which we can expect each model to
perform well. In particular, both the LGM and RDN models perform close to
optimal? when group size is large and linkage is high (row d). This indicates that
as clustering and connectivity increase, the performance of relational models may
improve (given moderate levels of autocorrelation).

These experiments have shown the relational data characteristics that can
impact model performance. Graph structure, autocorrelation dependencies, and
amount of test set labeling, all affect relational model performance. LGMs are
more robust to sparse labeling and perform well when graph clustering is high.
When the underlying groups are small and linkage is low, LGMs experience
high learning bias due to poor cluster identification. RDNs, applied with Gibbs
sampling, experience high variance on test data with sparse labeling, but perform
well across a wide range of graph structures. RMNs, applied with loopy belief
propagation, have higher bias on densely connected graphs, but are more robust
to sparse test set labeling. Our analysis has demonstrated the error introduced
by the use of collective inference techniques and how that error varies across
models and datasets. This suggests a number of directions to pursue to improve
model performance—either by incorporating properties of the inference process
into learning or through modification of the inference process based on properties
of learning.

4 For these datasets, N7 = 0.09 so the models cannot achieve a squared loss lower
than 0.09.



10

Squared Loss

Squared Loss

%]
1]
o

]

o
(9]
=
]
=]
o

n

— ]
o
- 8|
S N
o — o
— o

Squared Loss

Bias/Variance Analysis for Relational Domains

(a) Group size=small, linkage=low
Bias

Loss o . Variance
kel S
o o
— LGM — LGM-total
— —— RDN © --- LGM-learn
RMN o Q— RDN-total
— \\ © --- RDN-learn
© < RMN-total
\ S| RMN-learn
............................ o
o | TTTTITTooIIzzooozzooooIzooss
o

IS]
o
S+ 3
I I I I I I - © T I I I I I T © 7 I I I I I I
00 01 02 03 04 05 06 00 01 02 03 04 05 06 00 01 02 03 04 05 06
Proportion Labeled Proportion Labeled Proportion Labeled

(b) Group size=small, linkage=high
Loss Bias

Variance

.1 .
1 1 1
95 0.‘10
0.00 0.02 0?4 0?6 0.08

I I I I I
00 01 02 03 04 05 06

T T T T T T > T T T
00 01 02 03 04 05 06 00 01 02 03 04 05 06

Proportion Labeled Proportion Labeled Proportion Labeled
(c) Group size=large, linkage=low
Loss o Bias Variance
— —
(=}

0.04 0.?6 0.08

N

0.10
1 1
?0 0?2 0?

T T T T T T T~ S 7 T T T T T T S 7 T T T T T T
00 01 02 03 04 05 06 00 01 02 03 04 05 06 00 01 02 03 04 05 06
Proportion Labeled Proportion Labeled Proportion Labeled
(d) Group size=large, linkage=high

Loss o Bias . Variance
— o
N4 o S}

T T T T T T T T T T T T
00 01 02 03 04 05 06 00 01 02 03 04 05 06
Proportion Labeled Proportion Labeled

Fig. 3. Bias/variance analysis on synthetic data.

I I I I I
00 01 02 03 04 05 06

Proportion Labeled



Bias/Variance Analysis for Relational Domains 11

These experiments also help us understand model limitations and suggest a
number of ways to improve the design of relational learning /inference algorithms.
To improve LGM performance, we need to improve the identification of clusters
when inter-group linkage drowns out a weak intra-group signal. This may be
achieved by the use of alternative clustering techniques in the LGM learning
approach, or through the development of a joint learning procedure that clusters
for groups while simultaneously estimating attribute dependencies in the model.

To improve RDN performance, we need to improve inference when there are
few labeled instances in the test set. This may be achieved through the use
of non-random initial labeling to seed the Gibbs sampling procedure. We have
started exploring the use relational probability trees [11], learned on the known
attributes in the data, to predict class labels for use in the initial Gibbs labeling.
Preliminary results indicate that this modification to the inference procedure
reduces RDN loss by 10 — 15% when there is 0% test set labeling. Alternatively,
we could improve the RDN learning algorithm by using meta-knowledge about
the test set to bias the feature selection process. For example, if we know that
the model will be applied to an unlabeled test set, then we can bias the selective
learning procedure to prefer attributes that will be known with certainty during
the inference process.

Finally, to improve RMN performance, we need to improve inference when
connectivity is high, either when there are large clusters or when overall linkage is
dense. This may be achieved through the use of approximate inference techniques
other than loopy belief propagation, or through the use of aggregate features in
clique templates (that summarize cluster information) rather than using redun-
dant pairwise features. Alternatively, when using pairwise clique templates in
a densely connected dataset, it may be helpful to downsample the links in the
graph to reduce inference bias.

5 Conclusion

This paper presents a new bias/variance framework that decomposes squared-
loss error into aspects of both the learning and inference processes. To date,
work on relational models focused primarily on the development of models and
algorithms rather than the analysis of mechanisms behind model performance.
In particular, the impact of collective inference techniques applied to graphs
of various structure has not been explored. This work has demonstrated the
effects of graph characteristics on relational model performance, illustrating the
situations in which we can expect each model to perform well. These experiments
also help us understand model limitations and suggest a number of ways to
improve the design of relational learning/inference algorithms.

There are two ways to improve on our initial work with this framework.
First, we intend to broaden our analysis to real data sets and evaluate algorithm
modifications in these domains. This will lead towards a full characterization of
the situations in which we can expect relational models to achieve superior per-
formance. Next, we plan to extend the framework to analyze additional aspects
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of model performance. In particular, the analysis of alternative loss functions
(e.g., zero-one) and analysis of errors when estimating the full joint (rather than
marginals), will increase our understanding of model performance over a wider
range of conditions. Also, examining interaction effects between learning and
inference errors may help to inform the design of joint learning and inference
procedures, which could significantly extend the performance gains of relational
models.
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